72 research outputs found

    Across the Great Digital Divide: Investigating the Impact of AI on Rural SMEs

    Get PDF
    Rural SMEs are generally at a digital disadvantage due to their size and location. The addition of AI to many business processes has the potential to minimize the existing divide. However, without access to this technology and its responsible usage, Rural SMEs could be placed at a more significant disadvantage. To understand the current situation we conducted interviews with Rural SMEs and related stakeholders. This paper draws on Activity Theory to develop a holistic understanding of the influence AI is having on the business processes of rural SMEs. We also consider the role of AI in terms of the existing digital divide frameworks, as well as the newly proposed fourth wave that captures the novel forms of disadvantage AI can perpetuate

    Benzoic acid–3,4-bis­[(pyridin-3-ylmeth­yl)amino]­cyclo­but-3-ene-1,2-dione (1/2)

    Get PDF
    In the title co-crystal, C16H14N4O2·2C7H6O2, the 3,4-bis­[(pyridin-3-ylmeth­yl)amino]­cyclo­but-3-ene-1,2-dione squareamide mol­ecules assemble into chains along the b axis via N—H⋯O hydrogen bonds. The benzoic acid mol­ecules then hydrogen bond to the pyridine rings via O—H⋯N hydrogen bonds, supported by weaker C—H⋯O hydrogen bonds, forming extended ribbons. The asymmetric unit consists of a half squareamide mol­ecule, sitting on a special position around a twofold axis, and one benzoic acid mol­ecule on a general position

    Tetra­potassium cis-dioxido-trans-bis­(sulfato-κO)sulfato(κ2 O,O′)molybdate(VI)

    Get PDF
    The title compound, K4[MoVIO2(SO4)3], was precipitated from a melt of molybdenum(VI) oxide and potassium sulfate in potassium disulfate. The compound contains monomeric [MoVIO2(SO4)3]4− anions, with the MoVI atom, both oxide ligands, and the S atom and both ligating O atoms of the bidentate sulfate group lying on a crystallographic mirror plane. One of the potassium cations is nine-coordinate, while the other is eight-coordinate

    (E)-4-(1,3-Benzodioxol-5-yl)but-3-en-2-one

    Get PDF
    In the title compound, C11H10O3, the benzodioxole ring adopts a flattened [puckering parameters: q 2 = 0.107 (2) Å, ϕ2 = 160 (1)°] envelope conformation with the methylene C atom as the flap. The crystal packing features chains, parallel to the c axis, composed of dimers connected by weak C—H–O hydrogen bonds and extending in layers in the bc plane

    2-Acetyl­pyridinium bromanilate

    Get PDF
    In the crystal of the title mol­ecular salt (systematic name: 2-acetyl­pyridinium 2,5-dibromo-4-hydr­oxy-3,6-dioxocyclo­hexa-1,4-dienolate), C7H8NO+·C6HBr2O4 −, centrosymmetric rings consisting of two cations and two anions are formed, with the components linked by alternating O—H⋯O and N—H⋯O hydrogen bonds. Short O⋯Br contacts [3.243 (2) and 3.359 (2) Å] may help to consolidate the packing

    Monitoring one-electron photo-oxidation of guanine in DNA crystals using ultrafast infrared spectroscopy

    Get PDF
    To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl–DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium

    “The Road to (Gundag)AI”: Investigating the Impact of AI on Regional and Remote SMEs

    No full text
    Rural and remote SMEs are likely to be digitally disadvantaged due to their location and organization size. As AI continues to be added many everyday products, services, applications and devices, the potential exists to either widen or narrow the gap. Building upon existing digital divide literature we propose a fourth wave of digital divide to address the concerns of AI. Our research aims to develop an understanding of how AI impacts the digital experience of regional and remote SMEs through the application of Activity Theory. This study will provide a robust foundation for further research into AI in and the digital divide, with a focus directed by from regional and remote SME participants

    Neuropilin-1 Is a Direct Target of the Transcription Factor E2F1 during Cerebral Ischemia-Induced Neuronal Death In Vivo

    No full text
    The nuclear transcription factor E2F1 plays an important role in modulating neuronal death in response to excitotoxicity and cerebral ischemia. Here, by comparing gene expression in brain cortices from E2F1(+/+) and E2F1(−/−) mice using a custom high-density DNA microarray, we identified a group of putative E2F1 target genes that might be responsible for ischemia-induced E2F1-dependent neuronal death. Neuropilin 1 (NRP-1), a receptor for semaphorin 3A-mediated axon growth cone collapse and retraction, was confirmed to be a direct target of E2F1 based on (i) the fact that the NRP-1 promoter sequence contains an E2F1 binding site, (ii) reactivation of NRP-1 expression in E2F1(−/−) neurons when the E2F1 gene was replaced, (iii) activation of the NRP-1 promoter by E2F1 in a luciferase reporter assay, (iv) electrophoretic mobility gel shift analysis confirmation of the presence of an E2F binding sequence in the NRP-1 promoter, and (v) the fact that a chromatin immunoprecipitation assay showed that E2F1 binds directly to the endogenous NRP-1 promoter. Interestingly, the temporal induction in cerebral ischemia-induced E2F1 binding to the NRP-1 promoter correlated with the temporal-induction profile of NRP-1 mRNA, confirming that E2F1 positively regulates NRP-1 during cerebral ischemia. Functional analysis also showed that NRP-1 receptor expression was extremely low in E2F1(−/−) neurons, which led to the diminished response to semaphorin 3A-induced axonal shortening and neuronal death. An NRP-1 selective peptide inhibitor provided neuroprotection against oxygen-glucose deprivation. Taken together, these findings support a model in which E2F1 targets NRP-1 to modulate axonal damage and neuronal death in response to cerebral ischemia
    corecore